
Towards Tractable Reasoning on Temporal
Projection Problems

Xing Tan
Semantic Technologies Laboratory

Department of Mechanical and Industrial Engineering
University of Toronto

Email: xtan@mie.utoronto.ca

Michael Gruninger
Semantic Technologies Laboratory

Department of Mechanical and Industrial Engineering
University of Toronto

Email: gruninger@mie.utoronto.ca

Abstract—It is well known that reasoning with AI temporal
projection problems is difficult. Determining the Possible Truth
problem, a basic temporal projection decision problem, in the so-
called Simple Event System remains NP-complete. In this paper,
two types of constraints, on the graph-theoretic representation
of the cause-and-effect relationships between events and on
the partial orders of events, are further considered upon this
boundary NP-complete Possible Truth problem, in an attempt
to gain tractability. In particular, we show that the problem is
still NP-complete even if the cause-and-effect graphs maintain a
strongly restricted topology, whereas it is tractable if the graph is
closely associated with the set of pairwise disjoint partial orders,
which in addition is hierarchically structured.

I. INTRODUCTION

Temporal projection involves reasoning about consequences
of events in dynamical systems. It has broad applications in
a variety of different domains, from manufacturing process
control in Operational Research to Semantic Web Services in
AI Knowledge Representation and Reasoning.

In real world, major and direct causes and effects of events
can often be observed without ambiguity. Hence, the cause-
and-effect relationships between events in a dynamical system
model are usually characterized with complete knowledge.
However, due to the uncertainty or choices in various cir-
cumstances, the order in which events will occur can only
be partially specified. Since a partial order could potentially
involve a set of exponentially many total orders, one should
expect that determining consequence of events is difficult.

The analysis of computational properties of temporal pro-
jection problems was initialized by Dean and Boddy [1], where
events are partially ordered, and the framework for cause-and-
effect relationships are based on the propositional STRIPS
representation. The intractability of temporal projection is
verified in [1]: determining the Possible Truth (PT) problem,
a basic temporal projection decision problem, remains NP-
complete even when several severe restrictions are presented;
whereas only unrealistically trivial ones are polytime solvable.

A technical follow-up written by Neble and Bäckström [5]
points out that one special case, the PT problem in Simple
Event Systems (SES), conjectured to be polynomial time
solvable in [1], is indeed NP-complete. Meanwhile, the NP-
completeness proof for the first time relates the PT problem in

SES with the Path Avoiding Forbidden Pairs of Edges (PAFP-
E) problem in graph theory.

In order to receive tractability, two types of constraints,
on the graph-theoretic representation of the cause-and-effect
relationships between events and on the partial orders of
events, are further considered in this paper on the PT problem
in SESs, which insofar as we know is the most restricted
version of an NP-complete PT problem. As a matter of fact,
our results on both types of constraints are based on the results
of the PAFP-E problem.

For the constraints regarding the cause-and-effect relation-
ships between events, we first show that the problem of PAFP-
E in a special class of graphs, 2-layered planar s-t-DAGs, is
NP-complete, by transforming from the NP-complete One-in-
Three 3SAT problem ([2], page 259, and also see appendix of
this paper) into it. Using this result, we move on to show that
the PT problem in a SES, where its cause-and-effect graph is
a 2-layered planar s-t-DAG, is NP-complete, by a polynomial
transformation construction in exactly the same way as the
one presented in [5]. This work is summarized in Section III.

The work in Section IV contains three parts. First, moti-
vated by a recent result [4], in which a polytime algorithm
is proposed to solve the Path Avoiding Forbidden Pairs of
Vertices (PAFP-V) problem where the forbidden pairs are with
the so-called (Vertice) Hierarchical Structure (VHS), we revise
the algorithm to show that PAFP-E with a similarly defined
(Edges) Hierarchical Structure (EHS) can also be solved in
polytime. Second, we show that, if for any a1 ≺ a2 in its set of
pairwise disjoint partial orders there exists a path in its cause-
and-effect graph G from a2 to a1, a PT problem in SES can
be transformed into a PAFP-E problem and the existence of
solution in both directions is perserved by this transformation.
Third, if the transformed PAFP-E is with EHS, it can be solved
in polytime, which clearly means that the original special class
of PT problem is also polytime solvable.

Other sections of this paper serve the purposes as follows.
Section II provides background materials: definitions and com-
plexity results of the PT problem are presented in Section II.A;
whereas Section II.B includes all graph-theoretic concepts
related to the PAFP problems. Section V is a brief summary.
The Appendix Section provides definitions of SAT problems,
One-In-Three 3SAT problem in particular.

II. PRELIMINARIES

A. Temporal Projection

The formalization of a given domain as an Event System
and the PT problem is equivalent to the one given by [1] and
essential the same as the one given by [5].

Definition 1 (Causal Structure): A Causal Structure (CS) is
defined as a 3-tuple Φ = 〈E ,P,R〉 where

• T = {t1, t2, . . . , tm} is a set of event types;
• P = {p1, p2, . . . , pn} is a set of propositional conditions;
• R = {r1, r2, . . . , rp} is a set of causal rules in the form

ri = 〈ti, ϕi, αi, δi〉 where
– ti ∈ T is the event type that triggers ri,
– ϕi ⊆ P is the set of preconditions,
– αi ⊆ P is the set of added conditions,
– δi ⊆ P is the set of deleted conditions.

The concept of CS is introduced to specify how a given
state, which is a subset of P , evolves over actual occurrences
of events. Given a Φ and a state S, an actual event a with event
type t ∈ E is applicable in S if and only if the preconditions
for t are satisfied in S. If applicable, a changes S by adding
some conditions to S and removing some others from it, in
the way specified by the rule R. However, if not applicable,
a is effectless to S. Only those applicable ones in a sequence
of events changes S in a sequential manner.

The notion of Event System is introduced to describe a set
of actual events that are subject to temporal constraints in the
form of partial orders:

Definition 2 (Event System): An Event System (ES) is a 6-
tuple Θ = 〈E ,P,R,A,O, I〉 where

• T ,P,R are the same as the ones defined in Θ,
• A = {a1, a2, . . . , ap} is a set of actual events, such that

for each ai, type(ai) ∈ T ,
• O is a set of partial orders on A,
• I is a set of initial conditions in the system.
Given a set of events A in an Event System Θ , there exists a

set of completions, i.e., linear extensions, on A with their sizes
equal to |A|. One basic temporal projection decision problem
is defined as follows.

Definition 3 (Possible Truth Problem): The Possible Truth
(PT) problem involves deciding in an ES Θ whether there
exists a sequence on partially ordered events A such that a
given condition p holds in the state obtained from execution
of the sequence.

In general, temporal projection problems involve evaluating
the possible truth (PT) and the necessary truth (NT) of
conditions, however, our primary concern in this paper is with
the PT problems. It should also be noted that the PT problems,
as formulated by [1] and [5], determine the value of p in the
state right after certain event a ∈ A, whereas we evaluate p
in the state after the sequence of all events in A is executed.
Regarding computational complexity, these two variants are
equivalent.

As indicated by the following theorem, temporal projection
is intractable.

Theorem 1: The PT problem is NP-complete ([1], Theorem
2.1).
In order to obtain tractability, several types of constraints on
CS of Θ are considered in [1]. For example:

R1 each t ∈ T has but one applicable rule in R;
R2 |ϕ| = |α| = |δ| = 1 for all rules in R, and the size

of the initial condition is also 1, |ι| = 1;
R3 δ ⊆ ϕ;
R4 |R| = 2.

The following two theorems outline the complexity bounds
for the PT problems.

Definition 4: An Event System Θ with restrictions of R1,
R2, R3, is a Simple Event System (SES), written as Θsimple.

Theorem 2: The PT problem with Θsimple is NP-complete
([5], Theorem 3.3; conjectured to be polytime solvable in [1]).

Theorem 3: The PT problem with Θsimple, plus R4, is
polytime solvable (see the Algorithm on page 398 of [1]).

B. Graph-theoretic Concepts

A digraph is a pair G = 〈N,E〉 where N is a finite set
of nodes and E consists of edges, i.e., ordered pairs of nodes
on N . A direct graph is acyclic (DAG) if there does not exist
a sequence 〈v1, v1, . . . , vk−1, vk〉 of nodes such that v1 = vk

and (vi, vi+1) ∈ E for i = 1, . . . , k.
A DAG is layered if N can be partitioned into a sequence

of p disjoint subsets (layers), l1, . . . , lp, such that all edges in
E are between consecutive layers. A DAG is planner if it can
be drawn without crossing edges.

Definition 5: A 2-Layered Planar s-t-DAG is a layered
planner DAG with exactly one source node s and one sink
node t, and the size of each layer is at most 2.

Definition 6 (PAFP of Vertices): Given a digraph G =
(V,E), specified vertices s, t ∈ V , a set Fvertices of pairs
of vertices from V , the problem of finding a path avoiding
forbidden pairs of vertices (PAFP-V) involves finding a s-t
path such that at most one vertex from any pair in Fvertices

is contained in the path.
Theorem 4: PAFP-V, and its variant PAFP-E, in which the

the set of forbidden pairs Fedges consists of edges, are NP-
complete ([3], [2]).

Definition 7 (Vertices Hierarchical Structure): Consider
two nodes n1, n2 ∈ N , if there exists a path from n1 to n2

we write n1 ≺N n2. The set Fvertices in PAFP-V, is with the
Vertices Hierarchical Structure (VHS) if for any two pairs,
say (n1, n2), (n3, n4) ∈ Fvertices, there does not exit a path
in G such that n1 ≺N n3 ≺N n2 ≺N n4.

Definition 8 (Edges Hierarchical Structure): Consider two
edges e1, e2 ∈ E, if there exists a path from e1 to e2 we
write e1 ≺E e2. The set Fedges in PAFP-E is with the
Edges Hierarchical Structure (EHS) if for any two pairs, say
[e1, e2], [e3, e4] ∈ Fedges, there does not exit a path in G such
that e1 ≺E e3 ≺E e2 ≺E e4.

Theorem 5: PAFP-V with its Fvertices satisfying VHS can
be solved in polytime ([4]).

III. 2-LAYERED PLANAR DAG AND TEMPORAL
PROJECTION

Definition 9 (PAFP2LPedges): PAFP2LPedges involves
finding a path from s to t with forbidden pairs of edges in a
2-Layered Planar s-t-DAG.

Theorem 6: PAFP2LPedges is NP-complete.
Proof: It is easy to see that PAFP2LPedges is in NP:

for any s-t path, it can be checked in polynomial time if the
path satisfies the Fedges.

To show that PAFP2LPedges is NP-hard, we will trans-
form One-In-Three 3SAT (see [2] page 259, and the appendix)
to PAFP2LPedges. From an arbitrary instance of One-In-
Three 3SAT S = 〈U,C〉, where U = {u1, u2, ..., un} is a set
of variables and C = {c1, c2, ..., cm} such that |cj | = 3 for
1 ≤ j ≤ m is the set of clauses, we constructed a 2-Layered
planar s-t-DAG G = 〈N,E〉. The node set N consists of a
source s, a sink t, |n|−1 connectors {cntri|1 ≤ i ≤ |n|−1},
and two nodes, vij and dij (d stands for “dummy”), for each
literal pij in C. The edge set is

E = {(s, v11), (s, d11)}
∪{(vi1, di2), (di1, di2), (di1, vi2)|1 ≤ i ≤ m}
∪{(vi2, di3), (di2, di3), (di2, vi3)|1 ≤ i ≤ m}
∪{(vi3, cntri), (di3, cntri)|1 ≤ i < m}

∪{(vi3, t), (di3, t)|i = m}.

The set of forbidden pairs Fedges is a union of F1 and F2,
where
F1 = {[(vi1, di2)(di2, vi3)], [(di1, di2)(di2, di3)]|1 ≤ i ≤ m}
ensures a path will pass through one and only one literal node
for each clause component, and F2 contains forbidden pairs in
which the two edges of each forbidden pair enter, respectively,
two literal nodes that are negation of each other:
F2 = {[node1, vij)(node2, vkl)]|vij = ¬vkl},
where node1 and node2 represent the unique processor nodes
to vij and vkl, respectively, .

This is obviously a polynomial time transformation. Now
consider a constrained path P from s to t in G, F1 on P
makes one and only one corresponding literal in each Ci

of S true whereas F2 on P ensures that the assignment is
consistent. Hence, the existence of P implies the One-In-
Three satisfiability of S. The converse direction can be proved
similarly.

An illustration of this construction is given in Figure 1.
From a One-In-Three 3SAT instance S = {[a, b, c], [b,¬c, d]},
we construct G = 〈N,E〉 and Fedges, where

N = {v11, v12, v13, v21, v22, v23}
∪{d11, d12, d13, d21, d22, d23}

∪{S, T, Cntr1},

and F2 = {[(d12, v13), (d21, v22)]}.

Elements of E is shown in Figure 1 and the construction of
forbidden pairs in F1 can also be easily derived.

It is worth noting that 1) Theorem 6 holds even if the
forbidden pairs in Fedges are pairwise disjoint; 2) the general
transformation in [3] produces a DAG that is not planar; and

Fig. 1. Transformation from an One-In-Three 3SAT Instance to a PAFP
Problem

3) their restricted in-and-out-degree-at-most-two can only be
further transformed into a planar DAG that is at least 3-layered.

In the proof of Theorem 3.3 of [5] (Theorem 2 in this paper),
NP-complete PAFP-E in general DAGs with disjoint Fedges

is transformed into the PT problem in Θsimple to show that
the problem is NP-hard. Given Theorem 6, we can obtain the
main result of this section as follows, by transforming from
this NP-complete PAFP2LPedges into the current problem.

Definition 10: A Θsimple 2lp stdag is a Θsimple and its
cause-and-effect graph is a 2-layered planar s-t-DAG.

Theorem 7: The PT problem in Θsimple 2lp stdag is NP-
complete.

IV. PARTIAL ORDERS AND TEMPORAL PROJECTION

As indicated in [4] and Theorem 5 of this paper, PAFP-V
in DAGs, with Fvertices satisfying VHS, can be solved in
polytime. The theorem as follows shows that the polytime
solvability can also be achieved on PAFP-E in DAGs, with
Fedges satisfying the EHS.

Theorem 8: PAFP-E in DAGs, with Fedges satisfying EHS
can be solved in polytime.

Proof: The algorithm, which is a modification to the
Algorithm in Section 4 of [4], is presented in Algorithm 1
of next page.

The proof on the correctness of the algorithm consists of
Corollary 9, which shows that applying Step1, Step2, or Step3
will not affect the result on the existence of a forbidden path,
and Corollary 10, which indicates that when the algorithm
finishes, a new problem with trivial solution is reduced from
the original one.

Algorithm 1 The Algorithm to Find a Path in DAGs With
Forbidden Pairs of Edges

Input: 〈N,E, Fedges, s, t〉, where s is the source node and
t is the sink node in N :
while |V | > 2 do

Step1: find a free edge say e1 = (x, y) (i.e., there does
not exist another edge say e2 such that [e1e2] ∈ Fedges or
[e2e1] ∈ Fedges); replace x, y ∈ N by a new node u ∈ N
such that, in E, any edge (v, x) or (v, y) is replaced by
(v, u) and any edge (x,w) or (y, w) is replaced by (u, w);
remove (x, y) from E;

Step2: find an edge pair [(x, y)(y, z)] ∈ Fedges and for
any edge (y, u) such that u 6= z add an edge (x, u); for
any pair in Fedges that involves (x, y), add a new pair
where (x, y) is replaced by (x, u); remove (x, y) from
E, remove any pairs that contains (x, y) from Fedges;

Step3: remove an edge pair [(x, y)(u, v)] ∈ Fedges such
that there does not exist a path from (x, y) to (u, v),
(x, y) 6≺ (u, v).

end while
if E = φ then

print: Does Not Exist A Path
else

print: Exist A Path
end if

Corollary 9: Given G = 〈N,E, Fedges, s, t〉, and G′ =
〈N ′, E′, F ′

edges, s, t〉, which is obtained by applying either
Step 1, Step2, or Step3, there exists a forbidden path P in
G ⇐⇒ there exists a forbidden path P ′ in G′.

“=⇒” direction: Given P ⊆ G there are three cases to
consider

1) P ⊆ G′;
2) P contains a free edge efree = (x, y) that is removed

in G′ by applying Step 1;
3) P contains (x, y)(y, z), but by applying Step 2, (x, y)

is removed and (x, z) is added in G′.
For case 1, P is a forbidden path for G′. For case 2, remove
efree in P and concatenate the two segments to obtain P ′,
which is a forbidden path for G′. For case 3, replacing
(x, y)(y, z) in P with x, z to obtain P ′. Note that applying
Step 3 does not affect the solution. The proof for the “⇐=”
direction is similar.

Corollary 10: Given G = 〈N,E, Fedges, s, t〉, if no Step 1,
Step2, or Step3 can be applied to G, then V = {s, t}.

We prove this by contradiction. Suppose, on the contrary,
there exists an edge e1, e1 with some other edge e2 must ap-
pear in Fedges otherwise Step 1 can be applied. The forbidden
pair [e1, e2] must be separated by some e3 otherwise Step 2
can be applied. Similarly, e3 must also be in Fedges with some
e4. But all of the following cases

1) e1 ≺E e3 ≺E e4 ≺E e2;

2) e1 ≺E e3 ≺E e2, e3 ≺E e4 and e4 6≺E e2;
3) e1 ≺E e4 ≺E e2, e3 ≺E e4 and e1 6≺E e3

will not be allowed, otherwise we can start with e3 ≺E e4

with two extra edges e1 and e2. The two remaining cases
1) e3 ≺E e1 ≺E e4 ≺E e2;
2) e1 ≺E e3 ≺E e2 ≺E e4

violate EHS.
Given |N | = n and |E| = m (assume that n < m), we

have |Fedges| ≤ m2. In Step 1, searching for a free edge in
Fedges and then removing the edge if one is found, require
O(m) time if appropriate data structure such as an array of
linked lists is applied to store the forbidden pairs in Fedges,
concatenating the two ends of the removed edge into a new
node requires O(n) time, thus Step 1 is bounded by O(m).
In Step 2, searching for a forbidden pair connected by a node
requires O(m2) by brute force, the subsequent operations if
one such pair is found require another O(n), making Step 2
O(m2) bounded . As for Step3, since the redundancy check
for each forbidden pair requires an O(m) time breadth-first or
depth-first search, Step 3 is bounded by O(m3). Observe that
each application of Step 2 or Step 3 will reduce the size of
Fedges by one, the number of iterations is bounded by O(m2).
The overall time complexity is thus bounded by O(m4). Note
that it is likely that a more sophisticated implementation results
in a reduced complexity.

Finally, it should be noted that the algorithm can be easily
modified to print out the forbidden path, if one exists in the
original graph.

Next we show the implication of Theorem 8 on PT prob-
lems.

Definition 11: A Θsimple dag is a simple event system and
its cause-and-effect graph is an acyclic digraph.

Definition 12: A Θorders
simple dag is a Θsimple dag . In addition,

if a1 ≺ a2 is in its set of pairwise disjoint partial orders O,
there exists a path in the cause-and-effect graph G from a2 to
a1 (i.e., a2 ≺E a1).

It should be noted that, from the above definition, we have
in Θorders

simple dag 1) a2 ≺E a1 implies a1 6≺E a2, as G is a
DAG; 2) if a1 ≺ a2, there does not exist any permutation of
A, in which both a1 and a2 are applicable, because we have
a2 ≺E a1 in G.

Theorem 11: The PT problem in Θorders
simple dag has a solution

if and only if the PAFP-E in 〈G, Fedges〉, derived by the rule
a1 ≺ a2 ∈ O ⇐⇒ [a2, a1] ∈ Fedges, has a forbidden path.

Proof: Suppose in a PT problem, there exists a sequence
seq, which is a permutation A and achieves the goal condition
t from the initial condition s. Those applicable events in seq
construct a subsequence seqapp in the form [s, . . . , t], which
has a one-to-one correspondence to a path in G in the form
pathapp = [n(s) . . . , n(t)] in G. By the above rule, and the
fact that seqapp also satisfies O, any two edges constructing a
forbidden pair cannot both appear in pathapp. Hence, pathapp

is a forbidden path in G.
Suppose the derived 〈G, Fedges〉 has a forbidden path

pathforbidden = [n(s) . . . , n(t)]. The path pathforbidden cor-
responds to a sequence of applicable events in Θorders

simple dag ,

written as seqapp. Now, we can partition A into A1 ∪ A2,
and O into O1 ∪ O2. Assume that no event in seqapp ever
appears in A1 or O1, we can obtain a sequence seqirvt, which
is irrelevant to seqapp, by running topological sorting on O1.
Given that, 1) partial orders in O are pairwise disjoint and 2)
for any (a1 ≺ a2) ∈ O2, exactly one of a1 or a2 will appear
in seqapp, it is safe to extend seqapp to seqext by inserting a1

before a2 if a2 is in seqapp, and vice versa. The concatenation
seqext +seqirrt is a permutation of A that can achieve t from
s.

Definition 13: A Θorders ehs
simple dag is a Θorders

simple dag . In addition,
If an Fedges is constructed such that a1 ≺ a2 ∈ O ⇐⇒
[a2, a1] ∈ Fedges, 〈G, Fedges〉 is with EHS.
The main result of this section is stated as follows.

Theorem 12: The PT problem in Θorders ehs
simple dag can be solved

in polytime.
Proof: By Theorem 11, it is safe to transform the PT

problem in Θorders ehs
simple dag into 〈G, Fedges〉 satisfying EHS, for

solution. By Theorem 8, 〈G, Fedges〉 satisfying with EHS can
be solved in polynomial time.

V. CONCLUDING REMARKS

The most restricted PT problem known to be NP-complete
is the one in Θsimple. Starting from this problem, we pushed
the tractability boundary by adding additional constraints on
the topology of the graph indicating the cause-and-effect
relationships and on the structure of the set of partial orders.
In particular, we showed in this paper that the PT problem
in Θsimple remains NP-complete if its cause-and-effect graph
is a 2-layered planner s-t-DAG, whereas it is tractable if the
graph is associated in a special way with the set of pairwise
disjoint partial orders, and the set is in EHS.

Layered planar digraphs are special DAGs in which efficient
parallel algorithms exist for computing the shortest path [7].
From this perspective, the NP-completeness result for PAFP of
edges in 2-layered planar s-t-DAGs should have significance
in its own right. One interesting observation is that, 2-layered
planar s-t-DAGs are not series-parallel decomposable (see
Theorem 1 in [8] for recognition of series-parallel decom-
posable DAGs with respect to N graph as induced subgraph);
meanwhile, it can be derived from the construction in [3] that
PAFP of edges in series-parallel-decomposable DAGs is NP-
complete.

The paper [4] also introduces a halving structure that leads
to NP-complete subclass of PAFP of vertices; the structure is
of little use for the purposes of this paper since tractability
is obtained from the EHS. Nevertheless, it seems that other
structures on partial orders could also lead to tractable PT
problems: in [9], for example, Yinnone proposes a so-called
skew symmetry for forbidden pairs of vertices and shows that
PAFP under this restriction can be solved in polytime. We
believe this result can be adopted to obtain another class of
tractable PT problems, using the same method as the one
applied in Section VI of this paper.

The two main results presented in this paper, particularly the
NP-completeness one, is in favor of Nebel and Bäckström’s

claim in page 135 of [5], that is, it seems that the structure of
cause-and-effects does not contribute much to the intractability
of temporal projection problems and the set of partial orders is
almost exclusively the source of complexity. However, given
that the tractability of the other result in this paper depends
on the close association between the set of orders and the
cause-and-effect graph (see Theorem 11), the complete validity
of this claim demands further account of comprehensive
investigations. In particular, it would be interesting to see, by
keeping the EHS, but relaxing other constraints (for example,
allowing multiple preconditions and effects; multiple rules for
events), whether intractability could possibly be restored.

REFERENCES

[1] Dean, T., Boddy, M.: Reasoning about partially ordered events. Artificial
Intelligence 36 (1988) 375–399

[2] Garey, M.R., Johson, D.S.: Computers and intractability - a guide to
NP-completeness. W.H. Freeman and Company, Cambridge, MA, USA
(1979)

[3] Gabow, H. N., Maheshwari, S. N., Osterweil L. J.: On two problems
in the generation of program test paths. IEEE transactions on software
engineering SE-2 No.3 (1976) 227–231

[4] P. Kolman and Pangrac, O.: On the complexity of paths avoiding
forbidden pairs. Discrete Applied Mathematics 157 (2009) 2871–2876

[5] Nebel, B., Bäckström, C.: On the computational complexity of temporal
projection, planning, and plan validation. Artificial Intelligence 66
(1994) 125–160

[6] Sipser, M.: Introduction to the theory of computation, Second Edition.
PWS Publishing Company, Boston, MA, USA (2006)

[7] Subramanian, S., Tamassia, R., Vitter, J.: An efficient parallel algorithm
for shortest paths in planar layered digraphs. Algorithmica 14 (1995)
332–339

[8] Valdes, J., Tarjan, R., Lawler, E.: The recognition of series parallel
digraphs. SIAM J. Comput. Vol. 11, No.2 (May 1982) 298–312

[9] Yinnone, H. On paths avoiding forbidden pairs of vertices in a graph.
Discrete Applied Mathematics 74 (1997) 85–92

APPENDIX

A. Satisfiability Problems

A Boolean formula is an expression involving
1) Boolean variables, i.e., the variables having either 1 or

0 as their values,
2) Binary operators ∧, ∨, or ¬, standing for the logical

AND and OR or Negation,
3) Parentheses that can alter the default precedence of

operators: ¬ is higher than ∧, which is higher than ∨.
A literal is a Boolean variable or a negated variable. A clause
is a disjunction of one or more literals. A Boolean formula is
in conjunctive normal form (CNF) if it is a conjunction of one
or more clauses. It is in 3CNF if all the clauses have three
literals.

A Boolean formula is satisfiable if some assignment to its
variables makes the formula evaluate to 1. The SAT Problem
is to test whether a Boolean formula is satisfiable. The 3SAT
Problem is to test whether a Boolean formula in 3CNF is
satisfiable. The One-In-Three 3SAT Problem is to test whether
a Boolean formula in 3CNF is satisfiable and each clause
contains one and only one literal that is assigned with value 1.
It is well known that all these SAT problems are NP-complete.

